
23 things I know about modules for Scheme

Christian Queinnec
Université Paris 6 — Pierre et Marie Curie

LIP6, 4 place Jussieu, 75252 Paris Cedex — France

Christian.Queinnec@lip6.fr

ABSTRACT
The benefits of modularization are well known. However, modules
are not standard in Scheme. This paper accompanies an invited talk
at the Scheme Workshop 2002 on the current state of modules for
Scheme. Implementation is not addressed, only linguistic features
are covered.

Cave lector, this paper only reflects my own and instantaneous
biases!

1. MODULES
The benefits of modularization within conventional languages

are well known. Modules dissociate interfaces and implementa-
tions; they allow separate compilation (or at least independent com-
pilation à la C). Modules tend to favor re-usability, common li-
braries and cross language linkage.

Modules discipline name spaces with explicit names exposure,
hiding or renaming. Quite often, they also offer qualified naming.
These name spaces may cover variables, functions, types, classes,
modules, etc.

Just as components, modules may explicit their dependences that
is, the other modules they require in order to work properly. Build-
ing a complete executable is done via modules linking or module
synthesis in case of higher-order modules. Modules dependencies
usually form a DAG but mutually dependent modules are some-
times supported.

Proposals for modules for Scheme wildly differ among them (as
will be seen) but they usually share some of the following features:

Determinization of the building of modules — For us, this is the
main feature that allows users to build a system S exactly as it
should stand, that is, without any interference of the current
system where S is developped and/or compiled. This is in
contrast with, say the Smalltalk way, where the state of the
entire (development) system staid in memory (or in image
files) making notoriously difficult to deliver (or even rebuild)
stand-alone systems.

Interfaces as collection of names — If modules are about shar-
ing, what should be shared ? Values, locations (that is vari-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Scheme workshop ’02, Pittsburgh, Pensylvania, USA.
Copyright 2002 ACM [Revision: 1.12] ..$5.00

ables), types, classes (and their cortège of accessors, con-
structors and predicates) ?

The usual answer in Scheme is to share locations with (quite
often) two additional properties: (i) these locations can only
be mutated from the body of their defining modules (this fa-
vors block compilation), (ii) they should hold functions (and
this should be statically (and easily) discoverable). This
restricts linking with other (foreign) languages that may ex-
port locations holding non-functional data (the errno loca-
tion for instance). This is not a big restriction since modern
interfaces (Corba for example) tend to exclusively use func-
tions (or methods). On the good side, this restriction allows
for better compilation since non mutated exported functions
may be directly invoked or inlined.

Let us remark that values, if staying in an entirely Scheme
world, would be sufficient since closures are values giving
access to locations (boxes for dialects offering them will equal-
ly serve). Since values may be shared via λ -applications,
module linking would then be performed by λ -applications
without the need for, say, first-class environments [10].

Creating a namespace — A module confines all the global vari-
ables defined within its body. This global environment is
initially stuffed with locations imported from required mod-
ules. Some directives exist to specify the exported locations.
A location is specified by the name of its associated variable
though renaming (at export or import) often exists.

To use locations is very different from the COMMON LISP

way that rather shares symbols, with a read-time resolution,
assigning symbols to packages. The Scheme standard is mute
with respect to read-time evaluation or macro-characters that
both heavily depend on the state of the system while read-
ing.

Explicitation of required modules — In order to ease the build-
ing of large systems, modules should automatically keep track
of their dependencies so requiring a module would trigger the
requisition of all the other modules it depends on.

Another personal word: I have ported Meroon for years on 12
different Scheme systems [7] and [8, p. 333]. While missing li-
brary functions (last-pair for instance) or obsolete signatures
(binary only apply for instance) were always easily accomodated,
the most problematic points had always been (i) the understand-
ing of how macro-expansion and file compilation interfere and, (ii)
how to install macros (define-class and related) into an REP
loop. These problems were often solved by macros or invocations
to eval thus introducing a new problem: the relationship between
eval and macros!

Were not for macros, modules would probably be standard in
Scheme for a long time. Alas! Macros or syntaxes extend Lisp or
Scheme into new enriched languages providing syntactic abstrac-
tions that allows programmers to define abbreviations that simpli-
fies the expression of how to solve problems. In mathematics, the
“magic of (good) notations” has always transformed delicate se-
mantical problems into syntactical routines (compare Euclide’s el-
ements language with usual algebra language). I tend to think that
macros are probably the best reason for the survival of the Lisp
family but there are the root of the problems for modules!

A module is written in some Scheme extended with various macros.
It is expanded into core Scheme before being compiled. Macros do
often occur in the module itself to be used in the rest of the module.
This clearly requires the expansion engine to convert dynamically
the definition of the macro (a text) into an expander (a function):
this is the rôle of eval and the question is: what is the language
used to define macros ? This language is another instace of Scheme
possibly enriched with its own various macros. Therefore, in or-
der to understand a module, a “syntax tower” or “macro-expansion
tower” [9] must be erected. A module is therefore a tapestry of
woven computations performed at different times within different
variants of Scheme.

To sum up, a module proposal should solve many problems at the
same time among which: share locations, manage their names, de-
termine the exact language a module is written with, maintain mod-
ule dependencies (for locations and languages) and, in case some
invocations to eval appear in the built system, what language(s)
do they offer?

2. TAXONOMY
In this Section, I will shallowly describe some features of some

existing systems, I will then try to establish a rough taxonomy. This
Section borrows some material from [8, p. 311]. I will use the term
“abbreviation” for macros and syntaxes indifferently while I will
only use syntaxes for R5RS hygienic syntaxes.

In the snippets, the “languages” in which they are written appear
in right-aligned boxes. A language such as Scheme+m1 means
that the language is Scheme plus the m1 abbreviation.

The classified systems are Bigloo [13], ChezScheme [14], Gam-
bit [3], MzScheme [4] and Scheme48 [6].

2.1 Gambit
Gambit is probably the easiest to describe since there are no

modules per se! Gambit [3] is centered on a REP loop; the prede-
fined library offers the compile-file function compiling Scheme
to C files that may be further compiled and linked with C means.
A (declare ...) special form exists to alter the compilation
behavior.

The language processed by the REP loop is assumed to be the
one in which the file to be compiled is written. When an abbre-
viation is globally defined, it is immediately available. A global
abbreviation defined while compiling a file is only available while
compiling the rest of the file. Local abbreviations may be defined
along with internal definitions.

Let us give an example of the various possibilities. The first snip-
pet is performed within a first REP loop (whose prompt is REP1>).
The snippet defines a function f1 and an abbreviation m1: both
are immediately usable in the REP loop and in the file to be com-
piled. The m1 abbreviation is written in Scheme and may use f1 at
expansion-time. Uses of m1 may be expanded into invocations to
f1.

REP1> (define (f1)) Scheme

REP1> (define-macro (m1)
;;(f1) is OK

)
;;;(f1) and (m1) are OK Scheme+m1

REP1> (compile-file "f.scm")
;;;(f2) and (m2) are not OK Scheme+m1

Here is the content of the file, f.scm, to be compiled. It defines
a function f2 that may use the m1 abbreviation (and its expansion-
time resource f1). Invocations to f1 and f2 are of course al-
lowed. Another abbreviation, m2, is defined whose scope (though
“global”) is only the rest of the f.scm file. Eventually a function,
named compute, is defined wrapping a call to eval. The result
is a compiled module that may require f1 to run but always provide
f2 to whom will load it.

;;;File ”f.scm”
(define (f2) (Scheme+m1)

;;(m1) and (f1) and (f2) are OK
)

(define-macro (m2)
;;(m1) and (f1) are OK
) (Scheme+m1)+m2

;;; (m1) and (m2) and (f1) and (f2) are OK
(define (compute exp)

(eval exp))

The language in which is written the f.scm file is not defined
per se but due to the ambiant language in which compile-file
is called, it is (scheme+m1). In the absence of compilation, the
file just specifies that the m2 abbreviation extends an unknown lan-
guage. When compiled with the above conditions, the m2 abbre-
viation is considered to be written in Scheme+m1. The body may
also invoke f1 which is indeed present at f.scm expansion-time.

The third snippet is run through another REP loop. The compiled
f.scm file is loaded (a warning will be emitted to mention the ab-
sence of f1) then a function f1 is defined (it might not be the same
as the previous one defined in REP1) that will be used thoughout
the rest of the REP loop. The language of this REP loop is Scheme
without any abbreviation. The language accepted by the call to
eval within the compute function is the current language in the
current global environment.

REP2> (load "f") Scheme
;;;(f2) is OK

REP2> (define (f1))
;;;(f1) and (f2) are OK
;;;(m1) and (m2) are not OK

REP2> (compute ’(list (f1) (f2))) ;is OK

If REP2 were in fact REP1, f2 would be loaded as before and
f1 would be redefined, the initial language would be Scheme+m1
instead of raw Scheme and the abbreviation m1 would be allowed
in compute.

Repeatibility of compilation is achieved by starting fresh REP
loops. The model is simple, there is a single name space. No
module dependency is explicit, missing or conflicting locations are
caught by the compiler. The initialization order may be specified to
the compiler.

The space of names is structured via namespaces offering the
possibility of qualified names. A variable may be prefixed by the
name of the namespace containing it therefore m#f is the variable
f from namespace m. A ##namespace directive rules, in the

current scope, to which namespaces belong the defined variables.

2.2 Bigloo
Bigloo is compiler-centric. The compiler only compiles a sin-

gle module i.e., some files with a prepended module clause. The
module clause specifies the name of the module as well as some
compilation directives. The rest of the file(s) is the source to com-
pile (other files may also be adjoined with the include module
directive.

The Bigloo compiler creates .o files (through C) or .class files for
Java. When a module is mentioned in some module directives, the
module is associated to at least one file and its module clause is
read. Except when processing inlined exportations, the rest of the
module is not read, that is, the module clause contains everything
needed to compile or import it.

Expansion is performed with (EPS-style [2]) macros and/or (hy-
gienically) with syntaxes. When a global abbreviation is defined,
the compiler makes it available for the rest of the module. The lan-
guage is which the module is written is specified by the module
clause as well as its imported global environment.

Let us give a first, simple, example of a module, named M1. It
only exports the immutable unary f1 function (the arity and the
immutability are implied by the shape of the export directive).
It also defines an abbreviation m1 whose definition is written in
Scheme with the default global environment. This m1 abbreviation
may be used throughout the rest of the module.

(module M1 (export (f1 o)))

(define (f1 x)) Scheme

(define-macro (m1)
;;(cons), (car) are OK
;;(f1) is not OK
) Scheme+m1

;;;(m1) is now OK

Let us define a second module, named f. It exports the f2 mu-
table variable (this is implied by the export directive) as well
as the immutable unary function compute (that embeds a call to
eval) and the immutable nullary function get-bar. The body
of module f defines a global (that is, until the end of the module)
abbreviation m2.

(module f
(export f2

(compute x)
(get-bar))

(load (M1 "m1.scm"))
(import (f1 M1 "m1.scm"))
(eval (export f2)

(import bar)))

;;;(f1) is OK Scheme+m1

(define (f2))

(define-macro (m2)
;;(m1) and (f1) are OK
)

;;; Scheme+m1+m2

(define (compute exp)
(eval exp))

(define (get-bar)
bar)

The load clause of the module directive instructs the com-
piler to load the m1.scm file (not the M1 module) therefore the f1
function and the m1 abbreviation are available to the compiler. The
body of the f module may make use of the m1 abbreviation and the
expansion of an (m1) abreviation may call f1. However if the
result of the expansion contains a call to f1, the compiler would
not find it in the global environment of f and would therefore warn
the user. To fix this, f1 is explicitly imported with another module
directive. This directive only imports f1, this is to show that im-
portation may import all or an explicitly named subset of the global
variables of a module.

The last clause, the eval clause, specifies that f2 will be made
available to the language processed by the call to eval within
compute. Conversely, it also says that the bar variable of eval
may be used as the bar global variable within module f.

Let us now give a third module, named M2.
(module M2

(import (f "f.scm"))
(main start)
(eval (export f1)))

;;; Scheme

(define (start arglist)
;;f2, compute, get-bar are OK
)

(define (f1 x)
(list "f1@m2" x))

This is a main module whose entry point is the start function.
This function may use the functions imported from module f. A
third module directive exports for eval the current f1 function
defined in the current M2 module.

When the whole application is started, a call to compute will
use Scheme as language in a global environment made of f2 (from
f), f1 (from M2) and bar (seen from f2). This language may
evolve if enriched with new abbreviations submitted via compute.

The language of module directives is rich. It specifies importa-
tion, exportation (but no renaming) and re-exportation. Repeatabil-
ity is ensured since only one module is compiled at a time: abbre-
viations cannot share state between compilations. The language of
abbreviations may be specified (in Scheme but not in terms of com-
piled modules). The language of (all occurrences of) eval may be
specified as well.

2.3 Scheme48
Scheme48 compiles modules in memory. An application is built

by dumping the current state of the heap (one may also specify the
function to invoke first when the image is resumed). The initial im-
age contains the byte-code compiler and offers a REP loop able to
interpret Scheme expressions as well as commands to inspect val-
ues or specify the module within which interpretation is performed.
Commands are recognized by their leading comma.

Abbreviations are defined as specified in R5RS. Syntaxes are
available immediately after being defined throughout the rest of the
module.

Modules are built with a define-structure form (the name
comes from SML terminology since it is possible (but undocu-
mented in [6]) to define higher order modules). Modules export
names (locations or syntaxes). There are some possibilities to filter

the names to export as well as to modify them (both locations and
syntaxes).

Our first attempt will define a first module, named M1, defining
and exporting a function f1 and an abbreviation m1.

;;;Within file m1.scm
(define (f1))

Scheme
(define-syntax m1

(syntax-rules ()
((m1 x) (list "m1@m1" (f1 x)))))

Scheme+m1

After going in the config module, the M1 module is compiled,
at the level of the REP loop, with:

,config
(define-structure M1

(export f1 (m1 :syntax))
(open scheme)
(files "m1.scm"))

The M1 module imports the scheme module to gain access to
the associated global environment (for example, for list) and
syntaxes (for instance, for define-syntax). This double-sided
importation is easily done with (open scheme). On exportation-
side, the m1 abbreviation is exported with the :syntax type. Due
to hygien, the m1 syntax captured the location of the f1 function.

This first module may be imported by another module, f, whose
body is contained in the f.scm file. This second module is compiled
as follows (where the m1 syntax is renamed mone):

(define-structure f
(export f2 compute)
(open scheme (modify M1 (rename (m1 mone))))
(files "f.scm"))

And its content is:

;;;Content of file f.scm
Scheme+mone

(define (f2))

(define-syntax m2
(syntax-rules ()

((m2 x)
(list "m2@f" (f2 x)

(mone x) (f1 x)))))
Scheme+mone+m2

(define (compute exp)
(eval exp (scheme-report-environment 5)))

Due to hygien, the macro m2 captures f2 and f1 but it also
captures mone. The language in which are written expanders is
Scheme which happened to define syntax-rules. Were we to
use another language, we may enrich it with help of the for-syntax
clause. Here is a variation of module f where m1 is available to de-
fine the m2 macro while the mone macro may only appear in the
expansion of m2. The example is a little contorted since the use
of m1 is very gratuitous but it shows that Scheme48 differentiates
the language of the module from the language in which syntaxes
are written. This shows the first two level of the macro-expansion
tower [9] named “syntax tower” in [6].

;;;Content of file ff.scm
Scheme+mone

(define (f2))

(define-syntax m2

(begin
;; Scheme+m1
(display (m1 111))(newline)
(syntax-rules ()

((m2 x)
(list "m2@f" (f2 x)

(mone x) (f1 x))))))
Scheme+mone+m2

To compile the above module, we just open (that is, import), for
the language of syntaxes, the scheme (for display and newline)
and M1 (for m1) modules:

(define-structure ff
(export f2)
(open scheme (modify M1 (rename (m1 mone))))
(for-syntax (open scheme M1))
(files "ff.scm"))

Scheme48 compiles in memory so it offers various interesting ef-
fects: it is possible, at the REP loop, to place oneself in the context
of a module to evaluate some code and even to enrich the current
language and global environment:

,in F (list (f2 33) (m2 44) (m1 55))
,in F (define (f3) "f3@M1")
,in F (define-syntax m3

(syntax-rules ()
((m3) (list (f2 (f3))))))

,in F (m3)

The REP loop offers some features useful for development; for
instance, it is possible to reload a module without changing the
exportation contract.

Since all modules are known from the REP loop, there is no per
se module dependencies. However to determinize the building of
an image requires to be able to reset modules to their initial state
(in order to reset syntaxes with shared state), something possible
with the reload-package command.

Whereas the language of modules and syntaxes is well defined,
I did not see any possibility to specify the language of eval when
specifying the module. It is possible though in R5Rs with the usual
scheme-report-environment function and the like; this is
probably also possible making use of the internal get-package
function.

2.4 Chez Scheme
This Section is only inferred from Waddell’s and Dybvig’s pa-

per [14]. A module is alike a definition (it may appear wherever a
definition may occur (globally or locally)) and looks like (module
module-name (exported-names) body). A module opens
a new namespace that captures all definitions (variables or syn-
taxes) among which some are exported as mentioned by exported-
names.

Free variables of the module are also captured by the module
form but they are not exported. Such a form defines a kind of
first-class environment named module-name except that syntaxes
are also exported.

(let ((x 1))
(module A (f)
(define (f z) (list x z)))

(module B (g)
(define (g y) (f y)))

(import A)
(let ((x 2))
(import B)

(g x))) ;yields (1 2)

Modules are imported with the (import module-name) form.
This is again a definition form that may appear wherever a defini-
tion may occur. When an importation occurs locally the exported
names participate to the letrec effect as the other internal defi-
nitions.

This module system is intimately tied with syntax-case: an
interesting corollary is that a whole program making use of module
and import forms is transformed, after macro-expansion, into a
core Scheme expression (that is, without abbreviations or derived
syntaxes). The syntax-case facility allows for selective impor-
tations, renaming individual variables and gathering exportations
with the sole means of hygien (see [14, Section 3.3] for details). It
does not seem to allow the renaming or prefixing of all exported
variables.

Here are some (untested) examples though they do not make
these modules to shine.
(module M1 (f1 m1)

(define f1)
(define-syntax m1)
)

(let ()
(import M1)
(module F (f2 compute)

(define f2)
(define-syntax m2)
(define (compute exp) (eval exp))))

Good examples where modules are imported in a local scope are
given in the paper [14] however, separate compilation of local mod-
ules does not seem practical. These modules do not seem to allow
the specification of the language of expanders though the strict and
sole use of syntax-case alleviates this need. Nor they allow the
specification of the language of eval.

A very interesting property mentioned in [14] is the structure of
the compiled module. Since a module may export locations or syn-
taxes, the compiled code contains the code to initialize the locations
and the code for the exported expanders. When visit-ing a mod-
ule only the expansion resource are set up while load-ing a mod-
ule also initialize the regular locations. This might have been done,
in plain old Lisp, with eval-when: the compiled code related to
syntaxes is therefore conditionalized with a kind of (eval-when
(visit) ...).

2.5 MzScheme
MzScheme 200 is the most recently implemented module pro-

posal [4]. It improves on Chez Scheme’s module system and solves
a number of problems.

A module form specifies its name (bound in a specific names-
pace), the language it is written in and its body (a sequence of
definitions (locations and syntaxes), exportations, importations and
expressions). Exportations (of locations or syntaxes) are specified
with the provide form. This form offers facility to rename, prefix
or selectively hide names.

Importing a module is performed with the require form; im-
portations may also rename, prefix or selectively hide names. The
importation brings in names of locations or syntaxes. Note that
importations and exportations are not gathered in a single place.

Let us give an example of a module M1 exporting a function and
a syntax. The module is written in MzScheme; the language of the
abbreviation is not specified but as abbreviations adopt the syntax
language of R5RS, it should at least contain this latter.

(module M1 MzScheme
MzScheme

(define (f1))
(provide f1)
(define-syntax m1
(syntax-case))

MzScheme+m1
(provide m1)

)

Here is a second module, F, that imports M1 environment and
syntax.

(module F MzScheme
(provide f2 compute)
(require M1)

MzScheme+m1
(define (f2))
(require-for-syntax (rename M1 m1 mone))
(begin-for-syntax

;; R5RS+mone
(mone))

(define-syntax m2
;; R5RS+mone
)

MzScheme+m1+m2
(define (compute exp)
(eval exp))

)

Modules offer the usual syntax tower. In the F module, the lan-
guage for syntaxes also imports M1 (its function f1 and syntax
m1 renamed mone) therefore, the language for syntaxes is R5RS
enriched with mone. A specific syntax, begin-for-syntax,
evaluates its body in the language of syntaxes (something not so
dissimilar to eval-in-abbreviation-world [9]). Let us
focus a little on begin-for-syntax. Compare the old writing
with plain old macros with the new syntax1:

(define-macro (foo)
(hack)
‘(bar))

is now written as
(define-syntax foo

(syntax-case
((begin (begin-for-syntax (hack))

(bar)))))

Since dependencies are explicit, require-ing a module M re-
cursively requires the modules M requires. Compiling a module
M requires the modules M requires for syntax in order to initialize
the syntax tower and its first level: the syntax language. Modules
contains sequences of code associated with their phase (run-time,
expansion-time, etc.) and only the needed part is run when required
by a specific phase. Repeatability is ensured since modules’ envi-
ronments are not shared by differing phase: if a module is required
at some phase, it will be reinitialized when required at a different
phase.

Concerning explicit evaluation, there also exists in MzScheme
namespaces to provide global environments for eval (the stan-
dard scheme-report-environment function creates names-
paces). They do not seem to be associated with a syntax tower.

3. TAXONOMY
1I tend to think that the first one makes easier to understand the two
different languages that are involved.

All these modules systems are very different, they have various
goals and few common points. Here is an attempt to classify them.

What is a program? Scheme48 and MzScheme specify what is a
program with a grammar defining and instantiating modules.
ChezScheme proposes a transformation mapping a program
using modules into a single S-expression. Bigloo and Gambit
compile towards C (or JVM) and leave ld build programs.

Do modules support separate compilation? This sieves ChezScheme
embeddable modules from the others.

Do modules support interactive debug? Debugging means, most
of the time, violating the language (modifying a constant,
conditionally aborting computations, etc.): debugging is not
constrained by the language. Offering a toplevel for debug
as in Scheme48 complexifies the semantics.

Do modules support classes? Classes are not defined by Scheme
but all systems offer a variant of them. Bigloo is the only one
that combines class definition and exportation.

4. VAGUE FEELINGS, FUTURE QUESTIONS
This Section is highly hypothetic, it only reflects some instanta-

neous feelings about modules and macros. It also contains some
shallow ideas that need much, much, much work to be published :).
Of course, readers are not compelled to share these feelings!

Modules do not need to be embeddable, top-level modules with
explicit importations and exportations allow for easier separate com-
pilation. I also tend to think that higher-order modules are not
needed in an statically untyped language such as Scheme (generic
functions are probably sufficient).

Specifying a language or a global environment are two different
things that operate at different times with very different goals. Lan-
guages must be totally defined in order to expand modules: they
extend the compiler with a pre-pass (an expansion pass). There-
fore a language may be represented by a transformer that converts
expressions using some abbreviations into expressions that do not
use these abbreviations. Therefore an abbreviation may be seen as
a language transformer that is, creating a new language enriched
with a new abbreviation.

Today, the abbreviation protocol fuse all abbreviations into a
single transformer. To stage transformations would be benefitful
for instance for macros that want to code-walk expressions after
transformation to core Scheme (so they are free of implementation-
dependent special forms). How to compose abbreviations into passes
and how to rank passes is open.

Constituting global environments is rather independent of the
compiler. Even if requiring a unique thing, such as scheme, bring-
ing both a global environment and a language is, of course, easier
for the user, I tend to separate expansion and linking.

Importation language should allow arbitrary computations on sets
of names (for instance, managing the whole set of names associated
to a class definition, or names obeying a given naming pattern).
The importation language should also be able to accompany sets of
locations with extra informations required for better compilation.
This extra information should not obfuscate importations.

The only operation that can be performed on a compiled mod-
ule should be to load it (not to visit, import, use or whatever). I
therefore favor a mode where a module is compiled into a single,
monolithic, that is, non conditionalized, code. However, compiling
a module requires expanding its body. Expansion requires an eval-
uation that is done with an appropriate syntax tower. Compiling
another module requires another appropriate syntax tower.

On the evaluation side, it should be possible to build specialized
eval-uator(s) for any given language. Different parts of the whole
executable may need more than one language for extension. It
should also be possible (maybe with first-class environments [10])
to set up the needed sharing.

The synthetised eval takes an expression and a global envi-
ronment as in R5RS. The returned evaluator comes with its own
syntax tower, the language of the macros for this evaluator may be
obtained. An example of these functions may be as follows:

(make-eval language-expr) → evaluator
(evaluator expression environment) → value
(syntax-eval evaluator) → evaluator

A language-expr is an expression in a language definition lan-
guage, a naive example might be:

(base-language macro ...)

Finally, language expressions may also be used to specify local
languages to use:

(with-language language-expr s-expr)

Since a language is seen as an expression transformer it may be
obtained by loading a module. Finally, repeatibility must be the
paramount property of this system (with first-class languages?) to
offer real separate compilation.

5. CONCLUSIONS
This paper discusses various points offered by some module sys-

tems for Scheme, some problems they solve or not and some ideas
about them. As a conclusion, it seems highly hypothetic to add
soon a chapter on modules in R6RS. However, thinking positively,
I propose two measures that should be simpler to introduce:

• Documentations should explain the syntax towers they use
(for their toplevel, modules, eval or expand facilities).

• Introduce an eval function with an additional third argu-
ment specifying the syntax tower to use.

The source of the various experiments may be found via the net
at:

http://youpou.lip6.fr/queinnec/Programs/sws-2002Aug18.tgz

6. REFERENCES
[1] P. Curtis and J. Rauen. A module system for Scheme. In

Proceedings of the 1990 ACM Conference on Lisp and
Functional Programming, Nice, France, June 1990.

[2] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic
abstraction in Scheme. International journal on Lisp and
Symbolic Computation, 5(4):295–326, 1993.

[3] M. Feeley. Gambit-C, version 3.0 – A portable
implementation of Scheme, May 1998.

[4] M. Flatt. Composable and compilable macros: You want it
When? In ICFP ’2002 – International Conference on
Functional Programming, Pittsburgh (Pennsylvania, US),
Oct. 2002. ACM.

[5] R. Kelsey, W. Clinger, and J. Rees, editors. Revised5 report
on the algorithmic language Scheme. Higher-Order and
Symbolic Computation, 11(1):7–105, 1998. Also appears in
ACM SIGPLAN Notices 33(9), September 1998.

[6] R. Kelsey and J. Rees. The Incomplete Scheme 48 Reference
Manual for release 0.57, 1999. with a chapter by Mike
Sperber.

[7] C. Queinnec. Designing MEROON v3. In C. Rathke, J. Kopp,
H. Hohl, and H. Bretthauer, editors, Object-Oriented
Programming in Lisp: Languages and Applications. A
Report on the ECOOP’93 Workshop, number 788, Sankt
Augustin (Germany), Sept. 1993.

[8] C. Queinnec. Lisp in Small Pieces. Cambridge University
Press, 1996.

[9] C. Queinnec. Macroexpansion reflective tower. In
G. Kiczales, editor, Proceedings of the Reflection’96
Conference, pages 93–104, San Francisco (California, USA),
Apr. 1996.

[10] C. Queinnec and D. De Roure. Sharing code through
first-class environments. In Proceedings of ICFP’96 — ACM
SIGPLAN International Conference on Functional
Programming, pages 251–261, Philadelphia (Pennsylvania,
USA), May 1996.

[11] C. Queinnec and J. Padget. A deterministic model for
modules and macros. Bath Computing Group Technical
Report 90-36, University of Bath, Bath (UK), 1990.

[12] C. Queinnec and J. Padget. Modules, macros and Lisp. In
Eleventh International Conference of the Chilean Computer
Science Society, pages 111–123, Santiago (Chile), Oct. 1991.
Plenum Publishing Corporation, New York NY (USA).

[13] M. Serrano. Bigloo — A “practical Scheme compiler” for
Bigloo version 2.5b, July 2002.

[14] O. Waddell and R. K. Dybvig. Extending the scope of
syntactic abstraction. In Conference Record of POPL 99:
The 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Antonio, Texas, pages
203–213, New York, NY, 1999.

