
PURELY RTNCTIONAL OPERATING SYSTEMS

Peter Henderson

University of Newcastle upon Tyne

ABSTRACT

A range of operating systems are implemented, the entire text
of each system being written in a purely functional style. These
implementations lend themselves to configuration on a distributed
collection of computers. Each computer is assumed to support a
reasonable implementation of a purely functional language.

1. KEYBOARDS AND SCREENS

Consider a program which will accept an infinite sequence of
integers typed at a keyboard and will display on a screen twice
the value of each integer soon after the integer has been complet
ely typed. The integers which appear on the screen also constitute
an infinite sequence. Such a program can be specified in a purely
functional style as follows:

screen - double(keyboard)
where double(x) ~ cons(2Xhd(x),double(tl(x)))

A reasonable implementation of a purely functional language might
be expected to execute this program as follows. The elements of
the sequence "screen" are displayed as soon as may be possible.
Thus the first element is displayed as soon as sufficient key-
stokes have been made to guarantee that the integer which is the
first element of the sequence "keyboard" has been completed, say
as soon as a blank has been typed.

Suppose now we wish to attach two keyboards to this program,
in such a way that the display on the screen is an interleaving of
the sequences obtained by doubling each of the values typed at
each of the keyboards. Then we might have the following purely
functional program:

screen = double(interleave(keyboard1,keyboard2))
where double(x) = cons(2xhd(x),double(tl(x)))

177

P. HENDERSON

Again, we would require of any reasonable implementation that the
elements of the sequence "screen" might appear as soon as possible
after the corresponding integers have been typed at the relevant
keyboard. This means that, soon after an integer has been com
pleted at either keyboard, the corresponding value should appear
on the screen. Since the program can have no control over the
speed at which integers are typed at each keyboard, indeed one or
other may even be idle for a while, the function "interleave"
should be defined so that its result interleaves the elements of
its two argument sequences in the order in which they first
become available. Thus "interleave" is not a function only of
the elements of the sequences which constitute its arguments but
also of the time at which each element becomes completely defined.
It is my purpose in this document to show how a function such as
"interleave" can be deployed in programming a range of useful
systems, and then to discuss whether or not it should be included
in an otherwise purely functional language. The programs which
we shall write here retain most of the pleasant properties of
purely functional programs.

¥ith this preparation, let us be more precise about the
definitions of the functions we have so far introduced. We shall
make use of the very powerful notation of S-expressions for data
in our examples. The functions hd and tl will be used in
preference to car and cdr as the basic operations upon S-
expressions. When a sequence of data items are typed at a key
board, each item will in general be an S-expression and the
entire sequence itself will be represented by a semi-infinite list,
Consider the simple program

screen = interleave(keyboard1,keyboard2)

and suppose that the items typed at each keyboard are as follows:

keyboardl = (127 (PUT FRED (BLAH BLAH)) (GET P) 18 19 ...

keyboard2 = (-14 (RUN F G H) (SAVE F) (SAVE G) (1 2 3 4) ...

A possible sequence in which these items might appear on the
screen is:

screen = (127 -14 (RUN F G H) (PUT FRED (BLAH BLAH))
(SAVE F) (GET F) (SAVE G) 18 19 (1 2 3 4) ...

Note first of all that each of the items in the sequences has
remained intact "and secondly that, while the sequences as typed
on the keyboards have been interleaved, their order has been
retained. That is to say, each of the keyboard sequences can be
obtained by deleting certain of the items in the screen sequence.

178

PURELY FUNCTIONAL OPERATING SYSTEMS

If T is the type of a data item (e.g. integer, symbolic atom,
list, etc.) then let seq(T) denote the type of a (possibly semi-
infinite) sequence of items, each of type T. In the previous
examples, our functions had the following types:

hd
tl
cons
double
interleave

seq(T) •+ T
seq(T) -* seq(T)
T X seq(T) •+ seq(T)
seq(integer) "* seq(integer)
seq(S-expression) X seq(S-expression)

seq(S-expression)

Now, let us give a more precise definition of the "interleave"
function. If x and y are both of type seq(T) then interleaved,y)
is of type seq(T). Further, one or other of the following situa
tions pertains:

i) hd(interleave(x,y)) = hd(x)
tl(interleave(x,y)) = interleave(tl(x),y)

ii) hd(interleave(x,y)) = hd(y)
tl(interleave[x,y)) = interleave(x,tl(y))

Thus we see that any items appearing in interleaved,y) come from
either x or y and that further the order of items in x and y is
preserved in interleave(x,y). In the final section we give a
possible implementation of "interleave". Suffice it to say here
that "interleave" will be implemented in such a way that, in the
systems which follow, each sequence will be consumed at the rate
at which it is generated.

2. SIMPLE DATABASES

We shall define a very simple database system which allows its
user to save and recall "files". We shall assume a file is an
S-expression and a filename is a symbolic atom. The database will
be represented by a linear list of (filename file) pairs, for
simplicity. In practice a tree structure would be more acceptable.
We introduce the following functions as basic:

put: filename X file X database "* database

get: filename X database'"* file

with the following definitions

put{f,s,db) = if db=NIL then cons(cons(f,s),NIL) else
if hd(hd(dbTT = f then cons(cons(f,s),tl(db)) else
\ cons(hd(db),put(f,s,tl(db)))

get(f,db) = if db=NIL then MISSING else
if hd(hd(db)) = f then tl(hd(db))• else get(f,tl(db))

179

P. HENDERSON

We see that put(f,s,db) simply updates the list db to incorporate
the pair (f s), eliminating any other pair with the filename f,
while get(f,s,db) returns the s corresponding to f in db.

Now assume the user of our database is allowed to present two
commands. The first has the form (PUT f s) where f is a filename
and s a file, and has the effect of adding the file s to the
database,with name f. The second has the form (GET f) and has the
effect of retrieving the file with filename f. This behaviour can
be encapsulated in a single function.

dbstep: command X database "* response X database

which denotes the application of a single command to the database.
We define

dbstep((PUT f s),db) = DONE,put(f,s,db)
dpstep((GET f),db) = get(f,db),db

Note that the response to a PUT command is the atom DONE, while
the response to a GET command is the file (or the atom MISSING if
no such file is found, see "get").

We can implement our database system as a single function by
allowing it to map a sequence of commands to a sequence of
responses. Let us define

dbf: seq(command) "* seq(response)

as follows:

dbf(c) = dbfl(c,NIL)
dbfl(c,db) = cons(m,dbfl(tl(c),db'))

where m,db = dbstep(hd(c),db)

This is a fairly conventional recursive definition using a
subsidiary function dbf1. For a given database, db, the function
dbfl computes, for the first command, the first response m and
the new database db . The sequence of responses from dbfl is then
m, followed by responses invoked by the remaining commands when
presented to db'.

We can immediately see how dbf could be deployed as a single
user database system

screen = dbf(keyboard)

Here the sequence of commands typed at the keyboard invoke a
sequence of responses on the screen. If we display the sequence
interleave(keyboard,screen) then this might take the following
value:

180

PURELY FUNCTIONAL OPERATING SYSTEMS

(PUT FRED (BLAH BLAH))
DONE
(GET FRED)
(BLAH BLAH)
(GET MAVTS)
MISSING
(PUT MAVIS (12 3 4))
DONE
(GET MAVIS)
(12 3 4)
{GET FRED)
(BLAH BLAH)

We assume the interaction with dbf goes on for ever, despite the
likely switching on and off of equipment.

In order to allow two users to share the database, we must
interleave their keyboards, for example:

screen = dbf(interleave(keyboardl,keyboard2))

This means that the two users, having separate keyboards, must
share a single screen. We shall give this program a name, in
order that we may refer to it later. It is the first in a series
of useful systems, so we shall call it sysO. We have

sysO: seq(command) X seq(command) *"* seq(response)

where we define:

sysO(keyboardl,keyboard2) = screen
where screen = dbf(interleave(keyboard1,keyboard2))

Also, for pedagogical purposes we shall introduce a diagram for
each system. In the diagrams, arrows will always represent
sequences and boxes will always represent functions. Thus the
definition of each system can be read, in a straightforward
manner from the diagram. In what follows we shall give each
system in both forms. The diagram for sysO is as follows:

\
\
\

keyboardl „ .
TsL

keyboard2 [/]
dbf

181

P. HENDERSON

The interleave function is so common that we have given it a
special box, with a mnemonic triangle in it. Each of the arrows
in the diagram denotes a sequence of values. Each of the boxes is
a function from its incoming sequences to its outgoing sequences.

If we wished to give each user his own personal copy of the
screen, we would define the following systems, where we assume
keyboardl is associated with screenl and keyboard2 with screen2:

screen2

Reading the definition from this diagram, we construct

sysl(keyboardl,keyboard2) = screenl,screen2
where screenl = s
and screen2 = s
and s = dbf(interleave(keyboardl,keyboard2))

Whilst these systems do represent true sharing of a database, the
latter version is a little unrealistic in that each screen reflects
the responses to activities on the other keyboard.

To solve this problem we introduce the notion of tagging the
commands to and responses from the database. Let us use the
functions:

tag(t,x) = cons(cons(t,hd(x)),tag(t,tl(x)))

untag(t,x) = if hd(hd(x))=t then cons(tl(hd(x)) ,untag(t,tl(x)))
else untag(t,tl(x))

We have that, if x is a sequence of items then tag(t,x) is the
same sequence, each item having been tagged with the atom t. The
function untag(t,x) is used to project the sequence of tagged
items x onto the sequence of untagged items whose tags in x are
equal to t. We use the special boxes shown below to denote these
functions in our diagrams.

< E > -*tag(t,x) unt&g(t,x)

We must modify the database function to preserve tags, which
is accomplished very simply by altering dbstep as follows:

tdbstep((t PUT f s),db) = (t DONE),put(f,s,db)
tdbstep((t GET f),db) = (t get(f,db)),db

182

PURELY FUNCTIONAL OPERATING SYSTEMS

Ve redefine dbf in terms of this new step function, to derive a
tag preserving database.

tdbf(c) = tdbfl(c,NIL)
tdbfl(c,db) = cons(m,tdbfl(tl(c),db'))

where m,db = tdbstep(hd(c),db)

In terms of this we can define a system which allows,two users to
properly share the database without seeing each others responses.

keyboardl

keyboard2

f *(-1) *

»(-2 I » 3Craen2

The system can be written out more formally as:

sys2(keyboard1,keyboard2) = screenl,screen2
where screenl = untag(l,s)
and screen2 = untag(2,s)
and s = tdbf(interleave(tag(1,keyboardl),

tag(2,keyboard2)))

Now, with this system each user of the database sees only the
responses associated with his requests.

Already we have sufficient primitives to begin to build a
range of different and interesting systems. Let me illustrate
just two possibilities. The following system gives simultaneous
access from a single keyboard to two independent databases.

keyboard

dbf

183

P. HENDERSON

sys3(keyboard) = screen
where screen = interleave{tag(l,s1),tag(2,s2))
and s1 = dbf (untagO ,keyboard))
and s2 = dbf(untag(2,keyboard))

Note how the user must tag all his commands at the keyboard with
the identity of the database he wishes to access, and that
responses come back with an appropriate tag attached. Note also
that commands with tags other than 1 or 2 are simply ignored.

We can combine the structures of sys2 and sys3 in an obvious
way to construct a database system which allows two users to share
access to two independent databases.

keyboard!

screen2

sys4(keyboard1,keyboard2) = screenl,screen2
where screenl = interleave(tag{A,sA1),tag(B,sB1))
and screen2 = interleave(tag(A,sA2),tag(B,sB2))
and sA1,sA2 = sys2(untag(A,keyboardl),untag(A,keyboard2))
and sB1,sB2 = sys2(untag(B,keyboardl),untag(B,keyboard2))

This system allows the users to identify the database which they
wish to access with the tags A and B. Inside sys2, tags 1 and 2
are used to identify which user is intended to receive the
response, these tags are removed before the response streams sA1,
etc. are generated. The responses are properly tagged with the
name of the database from which they come.

Note that sys4 has precisely the same structure as sys2 and
that a yet more elaborate system, allowing two users to access
up to four independent databases could be generated simply by
replacing the occurrences of sys2 in the above diagram by sys4.

184

PURELY FUNCTIONAL OPERATING SYSTEMS

3. EDITORS AND DATA EXCHANGES

We now wish to address the problem of getting information out
of-a database, altering it and putting it back in again. We will
implement only the most trivial of editors, which will have only
one command for changing the structure of a file. A more useful
editor would require a full range of commands, allowing an
S-expression to be explored and altered at will. This is not an
issue here. The editor serves as a data exchange in the sense
that files wait there before being sent to the database and are
held there also on being retrieved from the database. Ve think
of the editor as containing therefore a "register" x, in which at
any time a file is held. The commands a user may give are:

(PUT f)

(GET f)

which puts x in the database with name f

which replaces x by the contents of the
file named f

(CHANGE t1 t2) which changes x according to templates t1
and t2

PRINT which displays the current contents of x
on the screen

We intend our edit function to fit into the following system:

keyboard
c edit

e
<^r

< Z K

dbf

sys5(keyboard) = screen
where screen = untag(S,e)
and e s= edit(c)
and c = interleave(tag(K,keyboard),tag(D,d))
and d = dbf(untag(D,e))

185

P. HENDERSON

Here we have used interleave with appropriate tags to merge
the input from the keyboard and from the database to the editor.
The edit function will therefore see tagged commands of the form:

(K GET f)
(K PUT f)
(K CHANGE t1 t2)
(K.PRINT)
(D.s) where s is some file (S—expression)

and will produce tagged responses of the form

(S.m) where m is a message
(D PUT f s)
(D GET f)

The edit function takes on much the same structure as dbf, in that
ve consider it applying a sequence of commands (to x) one step at
a time.

edit(c) = editl(c,NIL)
editl(c,x) s cons(m,edit1 (tl(c),x))

where ra,x' = editstep(hd(c),x)

We have introduced functions of the following types.

edit: seq(tagged-command) ~* seq(tagged-response)
editl: seq(tagged—command) X file"* seq(tagged-response)

editstep: tagged-command X file "* tagged-response X file

Now we are in a position to define editstep by enumerating the
cases which it will encounter.

editstep((K GET f),x) = (D GET f),x
editstep((K PUT f),x) = (D PUT f x),x
editstep((K CHANGE t1 t2),x) = (S dump(x')),x'

where x' = change(x,t1,t2)
editstep((K.PRINT),x) = (S.x),x
editstep((D.DONE),x) = (S DONE),x
editstep((D.s),x) = (SNEWPILE),s

This is a very trivial editor. We have not defined the functions

change: file X template X template "* file
dump: file -» response

which we leave to the imagination of the reader. In practice an
editor would need a number of commands and here CHANGE is being
used to illustrate how they might be implemented. Note how the
editor forwards the GET command to the database and subsequently
receives the new file from the database. There will be a period

186

PURELY FUNCTIONAL OPERATING SYSTEMS

of time, while the editor is waiting for this file, when commands
applied to x would be accepted. It would be foolhardy to take
advantage of this fact however,-because the new file could arrive
at any time, and obliterate x.

A possible session with this editor might be as follows:

(GET FRED)
(NEWFILE)
PRINT
(BLAH BLAH)
(CHANGE (1 2) (1 B B 2))
(BLAH B B BLAH)
(CHANGE 1 (1 1 1))
(* * *)
PRINT
((BLAH B B BLAH) (BLAH B B BLAH) (BLAH B B BLAH))
(PUT FRED)
DONE

Alternate lines are reflections' of commands typed at the keyboard
and responses displayed on the screen. We have taken a particular
decision as regards the form of templates and tlie nature of a
"dumped" expression which happens to reflect the behaviour of an
editor with which we have some experience.

Finally, suppose we are able to place in the database the text
of programs. That is to say, some of our files represent Lisp
programs. Then, we might extend sys5 to include the capability
for executing these programs as follows. We define functions to
execute a sequence of runcommands using a conventional eval
function.

run: seq(runcommand) ~* seq(putcommand)
runstep: runcommand ~* putcommand

eval: file ~* file

run(c) = cons(runstep(hd(c)),run(tl(c)))

runstep((RUN s f)) = (PUT.f eval(s))

It is necessary to add one more step to the editor.

editstep((K RUN f),x) = (R RUN x f),x

which will send to the run function the command to execute the
program in x and place the result into the file called f. The
system structure is "then as follows:

187

P. HENDERSON

keyboard

sys6(keyboard) = screen
where screen = untag(S,e)
and e = edit(c)
and c = interleave(tag(K,keyboard),tag(D,d))
and d = dbf (interleaved,untag(D,e)))
and r = run(untag(R,e))

With this system, the.user can GET-programs from the database,
CHANGE them (to include some data), send them to be RUN and
inspect the results of execution by getting the appropriate file
from the database. A session might be

(GET FACTORIAL)
(NEVFILE)
(CHANGE 1 (1 (QUOTE 6)))
(* *)
(RUN RESULTS)
... wait a respectable amount of time ...
(GET RESULTS)
(NEWFILE)
PRINT
72

As defined, the user can only guess when "run" will have completed
its work, but there is nothing to prevent him from getting on with
other work in the meantime. Requests to "run" will be queued by
this system.

In fact, with a slightly more elaborate editor, this is quite
a usable system, allowing as it does the construction and execution
of programs and the collection of results in files. It is remark
able that virtually its entire definition is contained in this
document in an executable form. Altogether we might expect each
of the basic subsystems (i) edit, (ii) run, (iii) dbf, (iv) sys
to be about 60 lines of purely functional program. For that, less

188

PURELY FUNCTIONAL OPERATING SYSTEMS

than 250 lines of formal text, we have an interactive operating
system of some considerable power. Since this is only a beginning,
and since pure functions are such a powerful programming medium,
we might expect whole order of magnitude improvements in the power
for marginal increases in the size of such systems.

4. HOW MANY PROCESSORS?

The style of definition of systems which we have used here has
an important property. We can easily configure the system to run
on a set of processors linked by some kind of serial communication
lines. Consider sys6 for example. Clearly we could implement it
on a single processor with serial lines to keyboard and screen.
Alternatively, we could devote a separate computer to the function
dbf. Since dbf is likely to require a great deal of storage space
for its data structures, it is reasonable to assume that this
storage will extend over secondary media and hence it is sensible
to devote a separate processor to this task. Similarly, a separate
processor could be devoted to the run task. It is an exciting
prospect that purely functional systems of this kind could be
configured in an arbitrary way with the greatest of ease.

5. THE-INTERLEAVE "FUNCTION"

Finally, let us turn to the implementation of interleave, out
of which all these systems have been built. In practice, we
would expect interleave to behave in a demand driven fashion.
That is to say, because of demand for its result, it constantly
demands its arguments. This way of looking at a function such as
interleave is intuitive and hence valuable. It is however an
operational view and may lead us to attribute to interleave
properties which we do not wish it to have. Rather, if we wish
interleave to ̂be a function and enjoy all the usual substitutivity
properties of a function, then we must be very careful about its
implementation.

Consider the following functions (cf. sys2)

pl(x,y) = h(s1,s2)
where sli- = f (s)
and s2 = g(s)
and s = interleave(x,y)

p2(x,y) s=h(s1,s2)
\; where s1 = f (interleave(x,y))

\
and s2 = g(interleave(x,y))

The function p2 is derived from pi. by substituting for s. If
interleave is a function, p1(x,y) = p2(x,y). That is, when

189

P. HENDERSON

considered as functional programs p1 and p2 should produce exactly
the same output when given the same input. In p2 the two occurr
ences of the subexpression "interleave(x,ŷ ' must then denote the
same sequence. There is a tendancy when thinking in terms of
functions demanding their arguments to believe that the two
functions p1 and p2, when considered as functional programs, will
behave differently because of the extra time, no matter how small,
required to evaluate interleave{x,y) twice. However, if inter
leave is a function, the only difference between p1 and p2 as
programs will be that the elements of the sequence p1(x,y) =
p2(x,y) may appear at different rates in each program. They will
not appear in different order.

We could of course insist that interleave is a function. We
must then answer two questions. Firstly, can the user of inter
leave write all the systems which he desires? Secondly, is the
need to make interleave a function too much of a constraint on
the implementor? Let us consider informally how interleave could
be implemented as a function. One obvious approach is to arrange
that all the items in the sequences which are arguments to or
results of the interleave function are timestamped. The time-
stamps on successive items in a sequence would be non—decreasing,
and interleave would maintain this invariant on its result
sequence, as well as implementing the rest of its semantics. In
case two items are encountered on the two argument sequences with
identical timestamps, interleave can consistently give preference
to its first argument (say). We would contrive to ensure that
the other functions ignored the timestamps, but otherwise main
tain the invariant on their result sequences. Finally, it is
necessary, and even appropriate, if all the functions, including
interleave, slightly delay items by incrementing the timestamps
suitably, but we shall not pursue that detail here.

Certainly, all the programs presented in this paper behave
appropriately with this definition of interleave. However, they
are but a small class and not representative of the whole range
of operating systems. The difficult question to answer is whether
the explicit implementation of a timestamp mechanism is a reason
able proposition. It probably is not, although it deserves some
experimentation . Alas, the implicit implementation of a timestamp
mechanism, where the items are not actually stamped but take as
their timestamp the time of inspection, does not implement inter
leave as a function.

If we implement interleave in a demand driven way, as we had
intended all along, then our programs have a purely functional
style but are no longer functions. This makes them more difficult
to reason about and probably more difficult to make correct.
Returning to the programs p1 and p2, we need only consider the
case when f consumes its argument at a much greater rate than g.
In p1, f will force s to become elaborated and g will of course

190

PURELY FUNCTIONAL OPERATING SYSTEMS

see the same sequence. In p2 however, there is no guarantee that,
simply because f has forced one occurrence of interleave(x,y) to
become elaborated, and presumably elaborated parts of x and y,
that the second occurrence of interleave(x,y) will return the same
(prefix of a) sequence. The problem is that in the argument
position of f, interleave(x,y) produces a result dependent on the
availability of elements in x and y while later (presumably) in
the argument position of g, interleave will find these sequences
already elaborated and will thus produce a result which may be
determined by its bias to one argument.

The kinds of systems which we have demonstrated in this paper
justify further study of the interleave primitive. It is very
powerful, its only shortcoming being its non-determinism, but
then, since we are trying to model non—deterministic behaviour
it may be that a non-deterministic primitive is necessary.

ACKNOWLEDGEMENT

This work has benefited greatly from the comments of colleaques
at the Universities of Newcastle and Edinburgh and from the members
of IFIP WG2.3. In particular, Simon Jones has helped me to
straighten out some of my thinking. This is not to suggest that
any of those who were critical of my earlier presentations would
not be equally critical of this revised' one. My understanding in
this area is far from adequate and I would very much appreciate
further comment.

REFERENCES

Backus, J. (1978). Can Programming be Liberated from the von
Neumann Style? A Functional Style and Its Algebra of Programs
Comm. A.CM. 21, 8, pp.613-641.

Friedman, D.P., Wise, D.S. (1980). An Indeterminate Constructor
for Applicative Programming. In Conf. Record of 7th Annual
A.CM. Symposium on Principles of Programming Languages,
Las Vegas.

Friedman, D.P., Vise, D.S. (1977). Applicative Multiprogramming.
Technical Report No. 72, Indiana University, Bloomington.

Kahn, G., McQueen, D. (1977). Coroutines and Networks of Parallel
Processes. In Information Processing 77, North Holland,
Amsterdam.

Keller, R\M., Lindstrom, G., Patil, S.S. (1979). A Loosely-Coupled
Applicative Multiprocessing System. In AFIPS Proc. 48,
pp. 613-621.

191

P. HENDERSON

Keller, R.M., Lindstrom, G., Patil, S.S. (1980). Dataflow
Concepts for Hardware Design. In COMPCON 80 (VLSI - New
Architectural Horizons), IEEE Computer Society.

192

