REASONING WITH CONTINUATIONS

Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, Bruce Duba

Indiana University, Bloomington, IN 47405, USA

Abstract. The A-calculus is extended with two opera-
tions and the corresponding axioms: €, which gives ac-
cess to the current continuation,'and A, which is an abort
or stop operator. The extended system is a sound and
consistent calculus. We prove a standardization theorem
and adopt the standard reduction function as an opera-
tional semantics. Based on it, we study the access to and
invocation of continuations in a purely syntactic setting.
With the derived rules, programming with continuations
becomes as easy as programming with functions.

1. Deficiencies of the A-calculus
“The lambda calculus is a type-free theory about func-
tions as rules, rather than graphs. ‘Functions as rules’
... refers to the process of going from argument to value,
...”1 No other words can better express why computer
scientists have been intrigued with the A-calculus. The
rule character of function evaluation comes close to pro-
grammer’s operational understanding of computer pro-
grams and, at the same time, the calculus provides an
algebraic framework for reasoning about functions. Yet,
this concurrence was also a major obstacle in the further
development of the calculus as a programming language
since it was based on simplicity rather than convenience.

The one and only means of computation in the pure
calculus is the f-reduction rule which directly models
function application. Although this suffices from a purist’s
point of view, it is in many cases inefficient with respect
to the evaluation process. For example, when a recursive
program discovers the final result in the middle of the
computation process, it should be allowed to immediately

! “]! p-3

CH2321-8/86/0000/0131$01.00 © 1986 IEEE

131

escape and report its value. Similarly, in an erroneous sit-
uation a program must be able to terminate or to call an
exception handler without delay. We could easily lengthen
this list of examples, but the thrust is clear: functions-as-
programs need more control over their evaluation.

The most general solution of the control problem
within the functional realm originated in denotational se-
mantics. A program can be evaluated by evaluating its
pieces and combining the results. When one particular
component is being evaluated, one can think of the re-
maining sub-evaluations and the combination step, i.e.
the rest of the computation, as the continuation of the
current sub-evaluation. The crucial idea is to write pro-
grams in such a style that functions can be used to ssmu-
late continuations. In other words, these programs always
pass around and explicitly invoke (a functional represen-
tation of) the continuation. They are thus able to direct
the evaluation process: they may decide not to use the
current continuation, to save it in a data-structure for
later use, or to resume a continuation from some other
point in time. However, such programs look clumsy and
are hard to construct. It is better to introduce linguistic
facilities which give programs access to the current contin-
uation when needed. Programs using these facilities are
“much simpler, easier to understand (given a little prac-
tice) and easier to write. They are also more reliable since
the machine carrying out the computations constructs the
continuations mechanically ...”2 Typical examples of such
facilities in A-calculus based languages are the J-operator
[4], 1abel values (7], eall-with-current-continuation (abbre-
viated as call/cc) [2], and catch and throw [9)].

Non-functional control operators “provide a way of
pruning unnecessary computation and allow certain com-
putations to be expressed by more compact and conceptu-
ally manageable programs.” 3 If they make continuations

2 C. Talcott about the introduction of note into Rum, a lexically-scoped
dialect of Lisp [10], p.68.

Definition 1: The term sets A, and A

The improper symbols are A, (,), ., €, and 4. Let V be a countable set of
variables. The symbols z, x, f, v, etc. range over V as meta-variables but are

— variables: zifz €V

ables, applications, and abstractions.

also used as if they were elements of V. The term set A, contains

— abstractions: (Az.M) if M € A and 2 €V
— applications: (MN) if M, N € A., M is called the function,
and NV is called the argument;
~ C-applications: (CM) if M € A., and M is called the C-argument;
~ A-applications: (AM) if M € A, and M is called the A-argument.
The union of variables and abstractions is referred to as the set of values.
A, the term set of the traditional A-calculus, stands for A, restricted to vari-

available as first-class objects, as in Scheme or ISWIM, it
is easy to imitate any desired sequential control construct
with little effort, e.g. escapes, error stops, search strategies
as applied in logic programming [5], intelligent backtrack-
ing [3], and coroutining [10]. Even though this is widely
recognized, control operators are still regarded with skep-
ticism. Their addition seems rather ad hoc, since it only
advances a particular implementation of the calculus as a
programming language but leaves the algebraic side be-
hind. There are no rules reflecting the new operations;
proofs of program properties can no longer be carried out
in the syntactic domain. They must be based upon a
semantic interpretation in terms of abstract machines or
denotational definitions [10]. In this paper we show that
the A-calculus as an equational system can incorporate
control operators and that non-functional control may be
characterized in a purely syntactic manner.

Since we are interested in reasoning about a call-by-
value language, i.e. Scheme [2], we use Plotkin’s A-value-
calculus [6] as the starting point. We do not expect that
the reader knows this variant, but we assume familiarity
with the notation and terminology of the conventional A-
calculus [1]. In the next section we extend the basic set
of operations by two new ones that give access to and
control over the current continuation of a program eval-
uation. The extended system is consistent in the sense
that two different derivations starting with the same term
are confluent. Hence, it permits algebraic calculations in
the familiar style. A standardization theorem provides
the means to tackle the major goal of this paper: to prove
theorems about how to reason with continuations as pro-

3 C. Talcott wrote this remark in the context of escape mechanisms, but
the spirit of her dissertation makes clear that it is also applicable to jump
operations in general [10], p.16.

132

gramming tools. The four theorems of Section 3 show that
one can understand access to and resumption of continu-
ations as syntactic operations of terms on their contexts.
The last section before the conclusion contains examples
demonstrating how to use the theorems.

2. The A;-calculus

Plotkin’s Ay-calculus constitutes the basis of our control
calculus, A.. For the sake of simplicity we concentrate
on constant-free expressions and the fy-reduction. The
inclusion of constants and an associated é-rule would make
the calculus more realistic but not more interesting.

The set of expressions of A, denoted by A., subsumes
the original set of A-expressions and includes two new
types of applications: - and #-applications. The for-
mal definition of A, is displayed in Definition 1. We adopt
the notational conventions of the classical A-calculus and
write Azy. M for Az.Ay.M, LMN for ((LM)N), and also
CM for (CM), ete. where this is unambiguous.

The notion of free and bound variables in a term M
carries over directly from the pure A-calculus under the
provision that € and 4 are symbols which are neither free
nor bound. Terms with no free variables are called closed
terms or programs. Since we do not want to get involved
in syntactic issues, we adopt Barendregt’s convention of
identifying terms that are equal modulo some renaming
of bound variables and his hygiene condition which says
that in a discussion, free and bound variables are assumed
to be distinct. Furthermore we extend Barendregt’s def-
inition of the substitution function, M[z := N], to A, in
the natural way: - and A-applications are treated like
applications where the function part is simply ignored.

The intention behind the two operations € and 4 can
easily be explained informally. 4 represents an abort or

stop operation which terminates the program and returns
the value of its argument. Whereas some operation like 4
is commonly found in traditional languages, € and its rel-
atives are only available in A-calculus based languages. It
is a form of the call/cc-mechanism in Scheme. The opera-
tion applies its argument to the current continuation, ie.
an abstraction of what has to be done in order to complete
the program after evaluating the C-application. This step
is also called labeling—or catching—of continuations with
reference to label values in more traditional languages.
The continuation is represented by a function; we gener-
ally refer to it as a continuation function. It is fnvoked—or
thrown to—by applying it to a value, just like a function.
The C-operation and call/cc only differ in a minor point:
call/cc implicitly invokes the current continuation on the
value of its argument; € leaves this to its argument. Given
C, one can define call/cc as A f.C(Ak.x(fK)).

The formal semantics of A, is defined by a continua-
tion-passing style translation (abbreviated cps) into the
A-calculus:

[z} = Ak.kz, (cpsl)
[(Az.M)] = Ak.k(Az.[M]), (cps2)
[(MN)} = [M](Am.[N](An.mnk)), (cps3)

[(EM)] = A& [M)(Am.m(Avk".kv)T), (cpsd)
[(AM)] = Ax.[M]L. (cps5)

The third equation, (cps3), expresses the left-to-right and
by-value evaluation of applications. The equations (cps4)
and (cps5) reflect the informal definition of € and 4: €
applies its argument to a functional object, encapsulating
the current continuation k; 4 throws away the current
continuation. It is easy to see from these equations that
neither € nor 4 are the images of combinators in A.

With these definitions in mind we turn to the reduc-
tion rules. First, we recall Plotkin’s call-by-value version
of the F-rule:

(Az.M)N & M[z = N] (8v)
provided that NV is a value.

Restricted to A, it is the basis of the A,-calculus, which
is an accurate reflection of 2 higher-order applicative lan-

guage with a by-value semantics [6]. For the control op-
erations € and 4, we need new reduction rules.

Given the expression ((M)N, we know that M should
be applied to a function which simulates the continuation.
The expression Af.(fN) almost satisfies the requirement
when the application is not nested within other expres-
sions. We need to know the continuation of the entire
application in order to send the result of fN to the rest

133

of the computation. So the reductions are:

(CM)N & Crxx. M(Af..(FN)), (C1)
M(CN) & CAx.N(hv.6(Mv)) (Cr)
provided that M is a value.

To derive the 4-reductions, we proceed in the same
manner. The 4-application must abort all pending com-
putations. Suppose that (AM) is in the argument position
of an application, e.g. N(AM). A should prohibit this ap-
plication and make M the result of the program. Since
we want reductions that can be applied to subterms, we
must assure that M is not only the result of this particular
application but also that of the whole expression. (AM)
achieves this effect. The reasoning for the dual case of
(AM)N is similar and so we define the following reduc-
tions:

(AM)N % AM, (Ar)
M(AN) %8 AN (4r)
provided that M is a value.

So far our relations can deal with programs where (-
and 4-applications are proper subterms. Next we have to
consider occurrences of (- and A-applications at the root
of a term, such as CAx.K(xI) or A(KI). The above def-
initions of € and A4 stipulate that these programs can be
further reduced, but neither of the above rules can eval-
uate them any further. We need two top-level evaluation
rules.

Intuitively, the program CAx.K(«I) is about to grab
the current continuation and pass it to Ax.K(«I). But
what is the current continuation? In principle, there is
nothing left to do after evaluating the C-argument, and
that is exactly what we model. The top-level continua-
tion object should, when invoked, stop the evaluation and
make its argument the final value of the entire program,
e.g. CAx.K(xI) should evaluate to I. A natural represen-
tation for this abort continuation is Az.Az. A quick check
shows that the sample program almost reduces to the de-
sired value:

CAk K(kI) = (Ac.K(xI))(Az.Az) = K((Az.4z)I) — 4],

except that we still don’t know how to evaluate programs
of the form AL

The case A(KI) is easy to deal with: the program
should abort and deliver the value of the A-argument as
the final result. On the other hand, there is nothing else
left to do but to evaluate the 4-argument. Therefore, it
is quite natural to say that A4(KI) results in KL

Definition 2: The A.-calculus

Let 5=% U G u¥ u L] U LY Then define the one step C-reduction —, as
the compatible closure of —:

M3 N=>M-,N;

M=, N = Az.M —, Az.N;

M—< . N=>ZM—.ZN,MZ —. NZ for Z € A
M—=.N=(M-.CN;

M —.N=> AM —. AN.

The C-reduction is denoted by —», and is the reflexive, transitive closure of
—+¢. We denote the smallest congruence relation generated by —», with =,
and call it C-equality.

The computation by is defined by: by = pe UbgU —2.. The relation =; is the
smallest equivalence relation generated by bg. We refer to it as computational
equalsty or just K-equality.

The left-hand side of the reduction and computation rules are called C-
rederes. A C-normal form M is a term that does not contain a C-redex. A
term M has a C-normal form N if M = N and N is in C-normal form.

Although it seems that we have the basis for an ade-
quate calculus, there is still a problem: neither of the top-
level rules is compatiblet with the syntactic constructions.
Put differently, the top-level relations are not applicable
to subterms. If they were, the equational system would
not be confluent. Consider the program K(4I): the rule
Ap leads to AI, which in turn would evaluate to I, but an
application of the top-level rule to the subterm (AI) re-
sults in KI and a final value of Azy.y. On the other hand,
the top-level relations are needed to reflect the semantics
of € and A. We therefore admit them with a special sta-
tus: instead of making them first-class reduction rules, we
define them to be computation rules and indicate this by
using b in place of —:

CMv¢ M(Az.Az), (Cr)

AMovog M. (A7)

Since we need both reductions and computations for

a strong enough calculus, care must be taken in formu-

lating the equivalence relations. Congruence relations are

only formed over the reduction relations; the notion of

compatibility is extended to €- and 4-applications. The

result is a sub-calculus of A,. By throwing in the addi-

tional computation rules we obtain the complete control

calculus. The formal definition is shown in Definition 2.

When we refer to equations in the traditional A-calculus,
we use =g instead of =, and =.

¢ (1), p.s0

134

We have an extended A-calculus programming lan-
guage that can handle first-class continuations. The
meaning of the programs is defined by the cps-transfor-
mation; furthermore, we have derived computation and
reduction relations that we claim describe equivalences
and evaluations among A.-programs. This immediately
raises three questions:

— Are the rules sound, ¢.e. do they preserve meaning?

— Is the equational theory consistent?

— And, do the relations define an operational semantics?
As for soundness the proof is a tedious but straight-

forward calculation. The soundness of the 3,-reduction is
known from Plotkin’s investigation of the A,-calculus [6].

Theorem 1 (Soundness). Let L € A be an abstraction
and let M € A, be a closed term, let — stand for either
g't, Eﬁ, 1’&, or -‘4, and let > stand for either b¢ or by:
If M — N, then [M]L =g [N]L and,
if Mo N, then [M]I =4 [N]L

The consistency problem is equivalent to proving the
confluence of reductions in —, and by, respectively. The
proof of the Church-Rosser property for =+ is an applica-
tion of Martin-Lof’s method for showing the correspond-

ing result for £»:

Theorem 2. The relation <+ is Church-Rosser.

Based on this, we can easily show:

i Definition 3: Standard reduction sequences and functions

‘! The standard reduction function, ~+4, for = is defined:

M S N = M s, N;
i MH.cM'¢MNH.¢M'N;
| M is a value, N ++c N' 2> MN v+, MN'.

f A standard reduction sequence of type C, abbreviated C-srs, is defined by:
‘ z€V =z is a C-srs;

i Ny,...,Ngis a C-srs =

Az.Ny, ..., 2. N, €Ny, ...,CNg, and ANy,..., AN are C-srs’s;

|
l M sy, Ny, and Ny, ..., Ny is a C-srs = M, Ny, .., Ny is a C-srs
| |

closure of 4, respectively.

M,,...,M; and Vy,..., Ni are C-srs’s =>
MNy,...,M;Ny,...,M;N} is a C-srs.

The standard reduction function for A, extends ~+,, to computations:
o= Dg UDgU g, .
A standerd reduction sequence of type K, K-srs, is defined by:

Ny,...,Np isa C-srs => Ny,..., Np is a K-srs;
Mg Nyand Ny,...,Npis a K-srs=> M, Ny, ..., Ni is K-srs.

The notation +}; and ~+%, stands for the transitive and transitive-reflexive

Theorem 3 (Consistency). The relation by, satisfies the
diamond property, s.e. if M by L; for ¢ = 1, 2 then there
exists an N such that Livg N fori =1, 2.

The theorem establishes the following traditional corol-

fix an operational semantics for the programming lan-
guage independent of a machine. We use Plotkin’s ele-
gant method and first define a standard reduction func-
tion which reduces the first—top-down and left-to-right—
redex in a Ac-term not inside an abstraction, a €-applica-

lary: tion, or an 4-application. Then we extend it to standard

! Corollary. reduction sequences by forming something like a compat-
(i) If M =i N then there exists an L such that M v} L ible closure: see Definition 3. The standardization the-

and Ny orem follows from this definition by adapting Plotkin’s

(ii) If M has a C-normal form N then Moy N.
(iii) A term has at most one C-normal form.

Furthermore, we can now prove:

Theorem 1' (Incompleteness). Let L € A be an ab-
\ straction. Then there are M and N in A, such that
[IM)L =5 [N]L but M#;N.

The proposition is a consequence of Theorem 3 and
!‘~ the fact that Plotkin’s value calculus is a sub-calculus. An
i example is given by: M = (ww)y and N = (Az.zy)(ww)
P where w = (Az.z2).

| More interesting, from a computational perspective, is
} the existence of standard reduction sequences since they
|

135

corresponding proof:

Theorem 4 (Standardization). Mo} N if and only if
there exists a K-srs Ly,..., Ly with M= Ly and L, = N

Beyond the satisfaction of a theoretical need, stan-
dard reduction sequences are interesting from a practical
point of view. A standard reduction function determines
an operational semantics for the programming language
of the calculus. A chain of ¢ applications leads from
the program to its value if and only if the program is
reducible to a value. We therefore consider a series of
++o-applications to a program as an evaluation. In the
next section we study the behavior of continuations with
respect to evaluations.

3. A syntactic characterization of continuations

All previous attempts to reason about the usage of con-
tinuation functions in programs relied upon a cps-like in-
terpretation of programs (3], [10]. The A.-calculus allows
us to understand the labeling and invocation of continu-
ations in terms of program code. The major tool for this
analysis is the operational semantics of the A.-calculus.

A closer look at the reduction and computation rules
for C- and A-applications makes it clear that € is elim-
inated in favor of 4 and that A removes a term by re-
placing the term with the 4-argument. The removal of
a C-application (CL) from a term M involves an exten-
sive rewriting of the whole term and always leads to the
application of L to some A-abstraction of the rest of M,
i.e. the textual context of (CL). When the continuation
is eventually invoked, the rest of the reduction process
is determined by the former context of (CL). Before we
proceed to prove some interesting properties about these
processes, we need some terminology. The sk-redez of a
term M is the redex such that M ~+, N for some N.
The depth of an sk-redex is the distance from the root
of M to the redex. Both notions are formally defined in
Definition 4. We sometimes prefix sk-redex with €, 4, or
B for clarification.

The concept of a textual context is formalized in the
notion of a A.-contezt which is a A.-term with zero or
more holes in it. The definition is just like the one for
A¢ except that the base case also inciudes []. We denote
contexts with C[],C'[], etc. C[M] is the term where all
holes of the context C[| are filled with M. Free variables

of M may become bound through the filling in. An sk-
contezt is a one-hole context such that only the hole could
possibly contain or be part of an sk-redex, i.e., [] is an
sk-context, if P is any term and C[] is an sk-context then
C[|P is an sk-context, and, if Q is a value and C[| is

an sk-context, then QC[| is an sk-context. For reasons
of hygiene we state:

Proposition. An sk-context cannot bind free variables,

Proof. An sk-redex cannot be within the scope of an
abstraction by definition of +4. OO

The next two lemmas connect contexts with sk-reductions.

Lemma 1. If M v, N then for some sk-context C| |,
M = C[P|,N =C|Q], and P =, Q, Pv¢e Q, or Pbg Q.
Similarly for v++,,.

The proof of this first lemma is trivial and omitted.

Lemma 2. Let C|[] be an sk-context and let ® stand
for either A or C, and let Q = (®R) for some R. Then

(i) C[Q] contains an ®-sk-redex
(i) Q is the ®-application part of C[Q)]’s sk-redex, and,
(iii) if P 2% Q or P28 Q, then dtky, < dekp).

Proof. Define M = C[P] and N = C[Q]. The argument
for (iii) is an induction on the structure of M; points (i)
and (i) fall out automatically.

SCl1: M = P. Butthen N =Q = (@R) and N is a
@®-sk-redex with d% = 0.

SC2: M = MM, M, is an application and contains M’s
sc-redex. By inductive hypothesis M; +~+,, N; such
that N; contains the ®-sk-redex with d)’\,"‘l < dF\Z-
If Ny = Q then N = QM, is the sk-redex we are
looking for and d§f = 1 < d§¥. Otherwise we know
from Lemma 1 that there is an sk-context C'[] #
[] such that M; = C'[P] and N, = C'[Q]. Since
C'[] does not change during the reduction, N =
N1 M; contains its redex in Ny, the redex in Ny is

; k _ ok k — ok
of the desired form, df = dy +1< dyg, +1=djy,
and the case is finished.

Definition 4: Sk-redexes, sc-redexes, and the depth of a redex.

dig = dig +1;

dﬁ:d;f—}-l.

The sk-redez of a term M and its depth d}{} is defined as:
(SK1)M if M is a Cr- or an Ap-redex and d%¢ = 0;
(SK2)P if P is the sc-redex of M and dif = df.

The sc-redez of a term M and its depth d}; is defined as:
(SC1)M if M is a C-redex and dfg = 1;
(SC2)P if M = KL, K is an application and P is the sc-redex of K and

(SC3)P if M = KL, K is a value and P is the sc-redex of L and

SC3: M = MM, M; is a value and M, contains M’s
sc-redex. This case is just like (SC2).0

Equipped with this machinery we can prove that 4 be-

haves like an abort operation:

Theorem 3. Suppose the sk-redex of a term M is an A-
redex whose A-application is AL. Then M evaluates to
the A-argument, i.e., M —} L.

Proof. The proof is an induction on the depth of the
sk-redex and uses Lemma 2 for the induction step.O

Next we turn our attention to the labeling of con-
tinuations. The theorem we have in mind structurally
resembles the previous one. It shows how a C-sk-redex
is removed from a term and how at the same time the
current continuation is computed from the context of the
C-application.

A (C-sk-redex causes a sequence of evaluation steps
with two halves: a construction phase, where the continu-
ation is built piecemeal, and a collection phase, where the
fragments are put together. The construction phase prop-
agates the C-application from deep inside the term to the
root via Cg- and Cr-reductions. Unlike an 4-application,
it does not remove but rewrites the context. In case the
C-application is part of a Cf-redex, say (CP)Q, it builds a
function which takes a continuation x as an argument and
then applies P to Af.x(fQ), i.e., it extends the continu-
ation x to the current continuation; otherwise it is part
of a Cg-redex, say P(CQ), and then invokes Q on the
continuation fragment Av.x(Pv). When the C-application
finally reaches the root of the term, it is removed, and its
argument is applied to Az.Az.

The collection phase is just a series of B,-reductions.
The argument is always the continuation which has been
built up so far; the function part has one of the above men-
tioned two forms: Ax.P(Af.£(fQ)) or Ax.Q(Av.k(Pv)).
In either case it results in the application of a former
C-argument to its current continuation. The collection
phase comes to an end when the argument of the orig-
inal C-redex is reached. Then the current continuation
has been computed and is passed to the function which
requested it.

Since every single step of the construction and collec-
tion phase is determined by the structure of the context,
one can define a function which computes the current con-
tinuation of a term M with respect to its {-redex:

[(CP), k). =«
[(PQ), k], = [P, Af.k(fQ)], where P is an application
[(PQ), k], = [Q, Av.k(Pv)], where P is a value.

137

Intuitively this function simulates in a top-down fashion
the chain of C-reductions in a construction phase. At the
same time it collects all the pieces in its second argument
which represents the continuation that has been built up
so far. If the function’s second parameter is the initial
continuation Az.4z, the result is the current continuation
requested by the C-sk-redex:

Theorem 4. Let the sk-redex of a term M be a C-redex
whose C-application is CL. Then M evaluates to an ap-
plication of the C-argument to the current continuation:

M} LM,)z.41],.

Proof. We prove our claim by induction on the depth of
the sk-redex in M: :

df=0: M = CL »} L(Az.Az) and [M,)z.42], =
Az.Az.
dﬂ} >0: Without loss of generality assume the redex is

a Cr-redex. By Lemma 1 and Lemma 2 we
know that for some sk-context C|],

M = C[(CL)Q] —ek N = C[CAr.L(Afx(fQ))]

that CAx.L(Af.x(fQ)) is the C-application of a
new (-sk-redex, and that d},,’-‘ < df‘}. Hence, we
can apply the inductive hypothesis to N and
get:

N =l (Ak.L(ASf.6(fQ)))[N, Az.A2],
ok L(AS.[N, Az.42](/Q))
since [-, -], is always a value
= L[M, \z.Az],
by Lemma 6 below.C1

From this theorem we can immediately deduce a corollary
about the continuation functions obtained by a €-redex:

Corollary 5. All continuation functions have one of the
following forms:
KI: \z.Az

K2: Av.K(Mv) where K is a continuation function and M
is a value

K3: Af.K(fM) where K is a continuation function.

The proof of Theorem 4 depends on:

Lemma 6. Let C[| be an sk-context.

(i) If M = C[(CP)Q], N = C[CAx.P(\f.k(fQ))], then
M, \z.Az], = Af.[N, Az.42) (fQ).

(i) If M = C[P(CQ)], N = C[CAx.Q(\v.k(Pv))], and P
is a value, then [M, Az.4Az], = Av.[N, Az.Az],(Pv).

Proof. Let us assume for the moment that [C[P], x], =
[P, [C|CX], k]). bolds for all P and any arbitrary term
X. Then we can establish the claims by straightforward
calculations:

(i)
[M, \z.Az],
~[CI(CP)Q], Mx.Az),
=[(CP)Q, [CI€X], Az.Az]).
for an arbitrary term X
=[CP,A[.[C[CX], Az.Az).(fQ)].
=A£[C(CX], Az.A2).(1Q)
=ALICICR.P(AS.5(fQ))], Az.Az] (£Q)
since X is arbitrary
=Af.[N, Az. 4] (fQ).
(ii) Similarly.
Our auxiliary claim is verified by induction on the struc-
ture of the sk-context C[|:
SCLl: C[] = |]. Then [C|P),k], = [Pk]. =

71X, x]]..
SC2: C[]| = C'"| |Q for some sk-context C'[|. Now we
have:

[C'[P]Q, ”]c = ld[P]”\f'c(fQ)]c
= [P [C'[CX], A/ .(f Q).
by inductive hypothesis

=[P, [C'CX]Q; £].].
= [P [C[CX], <L),

SC3: Similar to (SC2).0

Theorem 4 and Corollary 5 characterize how programs
label continuations and how these continuation functions
are constructed. Every continuation is built inductively
and always contains an 4-application at the bottom. Ac-
cording to Theorem 3, if the continuation ever reaches
the bottom in the course of an evaluation, it can forget
about the context of its invocation. The question is, what

happens if the continuation does not reach its initial 4-
application.

There are two possible cases in which a continuation
function does not complete the functional control path
that leads to the A4-application. It may invoke an 4-
application at one of the intermediate stages, or it may
grab a continuation with a C-application. In the former
case we have no problem at all: any 4-application which
becomes the sk-redex will remove the context. The second
case needs some investigation.

As we know from Theorem 4, the process of comput-
ing the current continuation depends on the context of the

138

C-application. We cannot expect a priori that the evalua-
tion of a continuation invocation can neglect its context in
this particular case. On the other hand from Theorem 4
we also know that with or without context the evaluation
results in an application of the {-argument to a new con-
tinuation. The C-arguments are the same in either case.
But, how different are the newly generated continuation
functions?

An example will shed some light on the situation. Sup-
pose the continuation K = Av.K'((Ay.Cy)v) is about to
be applied to I in the sk-context C[]. The evaluation
proceeds as follows:

C[KT] = CIK'((Ay.Cy)D)]
ek C[K'(CD)]
=4 I(Av.[C[CX], Az.Az) (K'v))
o Av.[C[CX), Az.Az] (K'V).

Without context the result would look different:

KIwg K'(Ay.Cy)T)
ok K'(CI)
1 I(Av.(Az.4z)(K'v))
ok Av.(Az.Az) (K'v).

However, one can see that the two results would behave
similarly if they were invoked. Both would immediately
call the continuation K' and, if this continuation reaches
its bottom, the two would yield the same result.

By induction from this specific case, we can argue that
the results are the same except for some continuations, but
those must behave equsvalently. The reason is that accord-
ing to Theorem 4 a C-application will always encode the
rest of the term as an abstraction. Hence, if during the
evaluation of some continuation a new continuation is la-
beled, the remainder of the old one will be the beginning
of the new one. Thus the rest of the context cannot play
an active role; it can never change the course of an eval-
uation. If the final result does not contain continuations,
the context of a continuation invocation does not make
any difference at all:

Theorem 7. Let the f,-sk-redex of M be of the form
KL where K and L stand for a continuation function and
a value, respectively, and let N be a value which does not
contain a continuation as a subterm:

KL~} N ifand only if M~} N.

Proof Idea. Since the proof is rather long and te-
dious, we only indicate the major proof idea. The proof
is conceptually an induction on the number of steps in
KL ~}% N, but in order to make the induction work

smoothly we need to prove a stronger statement:

If C'[KL'] evaluates to N for some sk-context
C'[] and value L' then C[K L] reduces to N for
all sk-contexts C[| and all values L which are
behaviorally equivalent to L'.

Behavioral equivalence essentially means that any fur-
ther evaluation of the two terms either returns the same
value or returns two functions which are behaviorally
equivalent. Hence, there is no possibility within the A-
calculus to differentiate the two resulting functions since
there is no equality predicate on arbitrary terms. The
syntactic difference between them is that wherever one
term contains a continuation the other must contain a
behaviorally equivalent continuation. Two continuations
are said to behave the same way if, when invoked, they
reduce in less than two steps to the invocation of the same
continuation.d

Let us summarize what we have found out so far about
continuation functions. Theorem 4 tells us that a contin-
uation abstracts the context of the C-application. Ac-
cording to Theorem 7, the invocation of a continuation
generally forgets about the current context and runs an
abstraction of a former program context. The next theo-
rem shows that we can get around the intermediate rep-
resentation in terms of functional abstractions and work
directly with contexts:

Theorem 8. Let K = [C|CX],Az.Az], for some sk-
context C| | and some term X, let L be a value, and
let N be a value which does not contain a continuation as

a subterm:
C[L] =3 N if and only if KL~} N.

Proof. The equivalence is shown by an induction on the
structure of the continuation K:

K1: K = Az.Az. This implies that C[| = [] and vice
versa and the statement is obviously true.
K2: K = Mv.K'(Pv) for a continuation K' and some

function P. From Lemma 6 we know that
C[| = C'[P[|]] for some context C'[| and K' =
[C'[CX], Az.Az], for any term X. Then the two
evaluations must begin with KL ~,, K'(PL) and
C[L] = C'|PL), respectively, such that PL is the
By-sk-redex in both terms. There are three possible
cases for the ++4.-evaluation of PL:

a) PL w} L' for some value L'. But then we can
apply the inductive hypothesis:

KLw}Y (K'L) =i N

139

and
ClL] =} C'IL') =}, N.

b) PL w7}, (AL') for some L'. This time by Theo-
rem 3 we get

KL~} KAL) o L'

and
ClL] =}, C'I(AL")] =} L.

¢) PLw} (CL') for some L'. By Theorem 4 and the
inductive hypothesis we get:

KL~} K'(CL') w3, L'(Ov.(Az.Az)(K'v))

and
L o-o;*k cler) o-»;",, 'K’

Since the two intermediate results are behaviorally
equivalent terms, we obtain the conclusion using
the strong version of Theorem 7.

K3: K = MA.K'(fQ) for a continuation K' and some
term Q. This case is the same as (K2).0O

The preceding theorem is a complete and simple rule
for thinking about continuations: when grabbing a con-
tinuation, remove and remember the current sk-contexs;
when invokiag a continuation, replace the current pro-
gram by the respective sk-context, filling the hole with
the argument. With this rule programming with continu-
ations becomes much easier.

4. Programming with continuations
The examples in this section illustrate simple applications
of our context rule for continuations. They may appear
rather trivial at a first glance, but without the above rule
they would be less tractable. We urge the skeptical reader
to translate the programs via cps into the A-calculus and
carry out the corresponding proofs there.

The first example is the program (*{Cw) where w =
Az.zz. It is interesting in its own right since continuations
are passed out of their original scope as the evaluation

shows:
w(Cw) —Jkk where k ~] |

—hwk

—hkk

)
The program obviously loops forever. The notation k ~
w[] stands for “k represents the context w|[].”

As our language is rather primitive we introduce
some common combinators and syntactic forms. The
function |-, .] stands for the pairing function, (-)o and
{-)1 for the left and right selectors: ([Mo, Mi])i **sc
M;. The abbreviation (let {[z,y]N)M) is to be read as
((Ap-((Azy-M)(p)o(p)1) N).

For our next example we want to extend the above
loop so that it iterates a function f over a value z. We as-
sume that successive applications of f to a value X always
sc-reduce to some value:

fX H:'c X,
[Xyp i Xy
fX,] H:‘c X//I ete.
Then the function L® defines a loop for f which itera-
tively generates the values of fz, f(fz), ete.

L® = Afz.(let ([, z])(C)x.x[x, 2])) ([, fz])).
This claim can easily be checked by a symbolic evaluation:

L2 fz -3 (let (s, 2](CAx.k[x,])) (x[x, f2])
w3 klK, f2] where & ~ (let (Ix,2][])(x[x, /=]))
o (et ([, z][x, X)) (x[x, f2]))
g (let (5, 2][x, Xp/]) (x]x, f2])) ...

We have generated this loop without a full-blown fixed
point combinator. With continuations it is also possible
to construct recursive functions without using a classical
fixed point combinator.

Before we present our final example we introduce some
more syntax and combinators. The functions Ty = Azy.zl
and F, = Azy.yl stand for the truth values true and false,
respectively. Given truth values, we can implement a call-
by-value version of the form (if Ny N3 N3) with the obvi-
ous behavior. Assuming that N} reduces to a boolean
value, the form stands for Ny(Ad.N2)(Ad.N3) where d is a
dummy variable.

Now, suppose that f is as in the second example and
that p is a predicate returning a truth value for every
X7, Xyy,... Then we claim that

L* = Apfz.C(0k. L2 (Ay.(if (py) (x3) (f)))(S2)

implements an iteration combinator which generates the
values Xy, Xyy, ... and returns the first one for which p
evaluates to true. Again, the proposition is validated by
a symbolic reduction.

5. Conclusions

In the preceding sections we have shown how the A-calcu-
lus can be extended to a control calculus. The resulting
system is sound and consistent. A standardization theo-
rem determines the operational semantics for A, and al-
lows us to talk about evaluations, in particular, about the
behavior of continuations during evaluations.

The essence of Section 3 is a rule which expresses all
continuation operations in terms of contexts. It makes
it possible to reason about non-functional control in the
same manner that we reason about functional program-
ming. Since first-class continuations can imitate any se-
quential control strategy, one can modify the calculus, the-
orems, and rules to deal with other constructs.

The control calculus also raises the question of what
kind of objects continuations really are. In denotational
semantics they are represented by functions. But this
only works because the definitions are expressed—should
we say programmed?—in a particular style, namely cps.
Their true nature remains concealed. We expect that a
further investigation of the A.-calculus will deepen our
understanding of continuation objects and the nature of
control operations in programminng languages.

Acknowledgement. We wish to thank Mitchell Wand
for his helpful discussions and comments about earlier
drafts of this paper. Michael Dunn helped to clarify the
Soundness and Incompleteness Theorem. We are also
grateful to John Gateley, Chris Haynes, and Carolyn Tal-
cott for comments on the final draft of the paper.

This material is partly based on work supported by
the National Science Foundation under grants DCR 85-
01277 and DCR 85-03279. Eugene Kohlbecker is an IBM
Graduate Fellow.

6. References

[1] Barendregt, H.P., The Lambda Calculus: Its Syntaz
and Semantics, North-Holland, 1981.

[2] Clinger, W.D., et. al., The revised revised report on
Scheme, Joint Technical Report Indiana University
174 and MIT Laboratory for Computer Science 848,
1985.

[3] Friedman, D.P., C.T. Haynes, E. Kohlbecker, Pro-
gramming with continuations, in P. Pepper (ed.),
Program Transformations and Programming Environ-
ments, Springer Verlag, 1985.

|4] Landin, P.J., The mechanical evaluation of expres-
sions, Computer Journal 6 (4), 1964.

[5] Mellish, C., S. Hardy, Integrating Prolog in the POP-
LOG environment, in J.A. Campbell (ed.), Implemen-
tations of Prolog, Ellis Horwood, 1984.

[6] Plotkin, G., Call-by-name, call-by-value, and the A-
calculus, Theoretical Computer Science 1, pp. 125—
159, 1975.

[7] Reynolds, J.C., GEDANKEN—A simple typeless lan-
guage based on the principle of completeness and the
reference concept, Comm. ACM 13 (5), pp. 308-319,
1971.

[8] Steele, G., COMMON LISP - The Language, Digital
Press, 1984.

[9] Sussman G.J., G. Steele, Scheme: An interpreter for
extended lambda calculus, MIT AI-Lab Memo 349,
1975.

[10] Talcott, C., The FEssence of Rum—A Theory of
the Intensional and Ezxtensional Aspects of Lisp-type
Computation, Ph.D. dissertation, Stanford University,
1985.

141

